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Abstract—A semi-empirical engineering constitutive law modelling in a unified and continuous
manner the main characteristic features of time-dependent materials, including creep, strain soften-
ing, relaxation and recovery and tensile brittleness, is briefly reviewed. The model, which contains
13 parameters, is a hereditary single Volterra-type integral representation of material response with
stress/strain nonlinearity assumed in the form of a power law, the strain tensor dependent on the
entire stress history and the stress-anisotropy/brittleness feature handled by means of a tensile-stress
dependent damage function. The capability/versatility of the model is illustrated by examples for
several materials.

1. INTRODUCTION

Despite the general availability of computer codes and computing equipment in design
offices and the recent progress in the application of principles of rational thermodynamics
to constitutive theory, the analysis and design of structures and machines made of time-
dependent materials continues to pose a serious challenge to the engineer. One of the
stumbling blocks is the choice of an appropriate constitutive model which accurately and
properly simulates the behaviour of real materials, a task made more difficult by the lack
of sufficient and definitive experimental data concerning the time-dependent behaviour
of common engineering and new/synthetic structural materials. Experimental evidence is
particularly scarce with regard to multiaxial and brittle/fracture behaviour of these
materials. A second contributing factor to the designer’s difficulties is the recent emphasis
on improved performance characteristics for structural materials, often under increasingly
stringent/hostile environments, a demand which is largely the result of economic/
competitive considerations, and which resulted in research and development work lead-
ing to completely new structural materials, such as fibre-reinforced plastics/resins and
mechanical alloys or to significant improvements in the mechanical, chemical, thermal,
electrical or transmissivity properties/responses of existing materials, examples of which
are the “new and improved” ceramics.

Many researchers agree that a reasonably successful simulation of the spectrum of
complex responses of these materials requires constitutive models of the hereditary type
which take into account the entire stress/strain history of the material. Unfortunately, such
models are rather complex, involving multiple Volterra-type integrals and a large number
of material parameters/functions, to be determined experimentally (Sobotka, 1984). These
models were tested/verified mostly against plastic materials (Ward, 1983).

In a traditional phenomenological approach, used in structural/solid/continuum mech-
anics and engineering design and also adopted here, the constitutive models basically
describe the macroscopic behaviour and properties of the material without offering an
explanation for or insight into the specific microscopic nature/mechanism of the phenom-

+ The results presented here were obtained in the course of research sponsored by the Natural Sciences and
Engineering Research Council of Canada, Grant No. A-2736.
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enon modelled. In contradistinction to such an approach, there are models proposed
by physicists., metallurgists and material scientists which are based on observations of
deformation mechanisms at the microscopic level, using so-called internal state variables.
The concept of a material state, borrowed from the theory of plasticity is used, usually
using two (additional) state variables, namely the “drag-stress”, defining the radius of the
stress state surface, and the deviatoric “back-stress”, locating the centre of this surface
(Ramaswamy et al., 1987). In proposing such models, referred to as “"unified” constitutive
models in the metallurgical/materials science literature, the proponents argue that since
both creep (time-dependent) and plastic (time-independent) effects can be seen from a
microstructural/metallurgical viewpoint as resulting from similar or identical mechanisms,
these effects should be, and can be treated in a unified manner as “inelastic deformations”
(Miller, 1987). Such a metallurgical approach is, however, limited to the modelling of
metals. It also does not, to the best of the authors’ knowledge, include/describe tertiary
creep effects. Furthermore, such models require a very large number of material para-
meters/functions, the experimental determination of which may, and likely will represent
quite a challenge. For example, some 30 parameters were suggested/specified in such a
recent model (Slovik and Sehitoglu, 1987). Even if such parameters and functions could be
defined/determined, there remains the non-trivial task of incorporating such a complex
material law, together with appropriate equations of equilibrium and geometrical relations,
into a set of governing equations which will be tractable and manageable with a reasonable
computational effort. The difficulties encountered in achieving such a practical goal lead
designers to revert to “simplified” models, their simplification being almost directly pro-
portional to the complexity of the structure/analysis problem at hand (Kraus, 1980 ; Yagadir
and Reddy, 1985). In analysis and numerical calculations, therefore, so-called simple creep
theories are used in which heredity is neglected and in which “unsteady” (hardening) and
“steady” (secondary) creep effects are usually defined by different sets of parameters and
expressions, the latter often arrived at simply by curve-fitting of constant stress creep test
data. The choice as to the type of creep law (expression) to be used in a particular case is
left to the user who also has to decide when to switch from one law to another (Dietrich
et al., 1987). In addition to such practical difficulties, the use of simplified models gives
predictions for material behaviour which very often do not compare favourably with
corresponding experimental data and/or structural response, particularly where stresses are
varying with time.

Some of these difficulties may be remedied by the introduction of a “unified”” engin-
eering constitutive model which simulates, in a continuous manner and by means of a single
expression and a set of material parameters, the main characteristic features of time-
dependent materials, including three stages of creep, relaxation and recovery, strain soften-
ing at constant strain rates an even tensile brittleness. It should be emphasized that our
“unified engineering” model has nothing to do with the “unified constitutive theories”
recently introduced by metallurgists and materials scientists using the “microscopic
approach” mentioned above. Our model is intended to include metallic as well as non-
metallic materials. We modified and relaxed the rigor of mathematical/continuum models
so as to include engineering/analysis requirements (tractability and manageability) thereby,
hopefully, arriving at a model which will be useful to the engineer and designer in his
everyday activities. A material law of this type was developed and discussed in Szyszkowski
et al. (1985) and Szyszkowski and Glockner (1985, 1986, 1987a), for materials with
well-established microscopic structure (ageing excluded) and memory depending on this
structure. The model is a hereditary single Volterra-type integral representation of material
response with stress/strain nonlinearity assumed in the form of a power function (Norton’s
power law) and the strain rate tensor a function of the entire stress historyv. This (strain)
rate tensor is decomposed into its elastic, viscous recoverable, and viscous permanent
strain rate constituents. The model involves 13 material parameters, two standard elastic
constants, five viscous parameters describing the first two stages of creep and three material
constants for each of the tensile and compressive third stage of creep, parameters each one
of which has specific physical interpretation/meaning and should be determinable from
suitably designed experiments. Our model thus meets two primary objectives. namely :
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Fig. 1. Some characteristics features of tension and compression creep and compression constant
strain rate test curves.

(i) it leads to a formulation which is “tractable™ and “calculable” by means of some
reasonable effort and

(ii) it contains only a “‘reasonable” number of material parameters which must be
determinable from experiments.

In addition, based on experimental data, our model incorporates the following assumed
material characteristics:

(1) a linear instantaneous response typical of Hookean bodies,

(2) material isotropy, extending for some range into the viscous deformation domain,
including the primary and secondary creep stages,

(3) isotropy terminating with the appearance of microcracking at some advanced stage
of deformation, a stage which can be related to the start of the accelerating/third
phase of creep,

(4) the third creep stage for compression may be rather long while for tension this
stage may disappear almost completely leading to very rapid fracture,

(5) the stress-anisotropy/brittleness feature is handled by a damage function assumed
to be tensile stress dependent,

(6) microcracking affects only the permanent and not the reversible portion of the
viscous strain rate,

(7) above a certain level of compressive strain, the strain rate depends not only on
stress level but also on the current value of the accumulated permanent viscous

strain.

Most of the material characteristics modelled are indicated schematically on Fig. 1 for
uniaxial creep (constant stress) and constant strain-rate tests in tension and compression.

After a brief summary of the analytical aspects of the model, its capability and
versatility are illustrated by comparing theoretical predictions with experimental data for:

(i) primary and secondary stage creep behaviour for ice, asbestos laminate, copper,
asphalt, concrete and poly-vinyl-chloride,
(i) recovery (upon unloading) for ice and asbestos laminate,
(iit) all three creep stages in compression and strain softening at constant strain rates
for ice.
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2. THE CONSTITUTIVE MODEL

A general uniaxial strain/stress relation for time-dependent materials at constant tem-
perature is written as (Sobotka, 1984 ; Szyszkowski and Glockner, 1987a; Findley et al.,
1976 ; Krempl, 1975)

e(r) = f I Flo(7), ¢ dr (1

where ¢ and ¢ denote strain and stress, respectively, and F defines the viscoelastic properties
of the material as a function of stress history, from t = 0 (the “virgin” state) to the current
instant, T = ¢. It is assumed that the external loads are limited to magnitudes so as to keep
the stress level below the yield stress and thus produce only an elastic instantaneous
response. Based on uniaxial test data for materials to be modelled here, eqn (1) is rewritten
in the form

e(t) = GE(—:)) +L[ Flo(©)] - L(t—7) dz 2)

in which the elastic and viscous responses are separated with E, denoting Young’s modulus,
F defines the stress nonlinearity while L(f), a stress-independent material function, rep-
resents the “fading memory” of the material, assumed to be

1. 1 dL
L(t)=-v-11(t)+v—2, E<0 (3)

with v, and v, being further material constants and the function j(¢) satisfying the condition
dj/dt <0, j(£) = 0 for t — oo and for convenience normalized as j(0) = 1. For a wide class
of materials, an appropriate choice for the stress nonlinearity function is Norton’s power
law, also referred to as Glen’s law, expressed as

F(o) =o"|a|""! @

where n, a material constant, indicates viscous nonlinearity. All parameters associated with
isotropic creep, namely n, v, v,, and the function j(r) are to be determined from creep test
data for the first two stages (Szyszkowski and Glockner, 1987a). In fact, the function j(¢)
does not need to be determined explicitly. Instead, the parameters ¢, and ¢, (see Fig. 1) can
be used to define an approximate creep characteristic, j(f), such that

_ﬂ’] .
im0 dtfi=o’

in which the function j(¢), in turn, describes the creep behaviour of a generalized Kelvin
body, also discussed in Szyszkowski and Glockner (1987a).

Using eqns (3) and (4) in eqn (2), the total strain, or the strain rate can be expressed
in terms of its elastic, £°, reversible, &*, and permanent, &°, portions as

J Jj® d:=f J() dt; and %

0 0

j 1d 1
0 = et =204 L E?L (@I jt=7) de+ - [oO) ®)

an expression which can formally be obtained by postulating the existence of a comp-
lementary power potential (o) in the form
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and writing £ = d#/des. Analogously, we define a complementary power potential, #(q,,),
for the three-dimensional stress state as

_ @, d o'kzk SZ] 1 d J‘t S+l ) P s+!
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from which we obtain

, 02
3,}.: -677‘__, == 5,‘}‘{"8@‘*‘35 (8)
and where
e 1 . . . b dff -
& =—1I[(1 +!‘)0'£j“ﬂ0'kk5fj}; £ = — — [5:'}(‘1’)} Jt—1) dr (9a,b)
E, V) dr Jo
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in which &;; denotes the “effective” viscous stress and S? = is;:s5;; with the stress deviator
defined in the normal manner by s;; = 6;,— }6..6,;, # denotes Poisson’s ratio, K, and G are
the bulk and shear modulus, respectively, while §;; are components of the Kronecker delta.
Note that the viscous portions of #(o;;) were assumed to depend only on the second stress
deviator invariant, S, and therefore the viscous strain rates refer to incompressible viscous
processes, neglecting the effects of the first stress invariant (the mean stress) on the viscous
deformations, an assumption which is valid except for conditions of unusually high ali-
around (hydrostatic) pressures. The constitutive law in the form given by eqn (9) was
discussed in Szyszkowski and Glockner (1987a), where a numerical method for the effective
treatment of the integrals in the reversible portion of the creep was also proposed. Clearly,
this law can describe only isotropic materials. There are, however, many time-dependent
materials which, though their elastic or even primary viscous behaviour can be considered
isotropic, may develop some stress anisotropy (despite their structural isotropy) which
manifests itselfin different responses to prolonged tension and compression. This anisotropy
can be related to internal microcrackings. Resistance of the material with microcrackings
is usually different for tensile and compressive stresses.

In accordance with one of the assumed material characteristics, microcracking affects
only the permanent portion of the viscous strain rate, £, an assumption based on exper-
imental data indicating that at advanced stages of creep, the rate of reversible viscous
strain, ], approaches zero. Thus, only the expression for &, eqn (9¢), has to be modified
for the tertiary phase, such modifications being different for, compression and tension for
our assumed “tensile~brittle” material. Note that this constitutive law, eqn (8), reduces to
the well-known relations of linear viscoelasticity (Sobotka, 1984 ; Rabotnov, 1969), when
wesetn = 1.

2.1. Microcracking in tension

In a tensile zone, the effects of microcracking may be represented, qualitatively and in
a global way, by introducing a damage function, w(f), which physically describes the relative
decrease in effective area available for stress transmission. The actual or “true” stress in
such a zone, which is the stress level that governs the viscous process, is thus obtained by
dividing the “nominal” stress by | —w(?), with w(7) varying from 0 for an uncracked (virgin)



78 P. G. GLOCKNER and W. SZYSZKOWSKI

material to 1 at the instant of rupture. Accordingly, the expression for the permanent
viscous strain rate, eqn (9¢). is modified to read

P ["f_(’)] (10)

v, L1—o)

To define the evolution law for the damage function we assume the rate of damage to be a
function of the true stress and the damage itself, in the form

. _K,[ Tamax ]F_ 1 1
O =K\ T"0w) T=e0rT (an

where K, I" and n are material constants determinable from and defining the tertiary (tensile)
creep stage of the material, and a,,,, denotes the largest tensile stress, assumed to be zero
in the case of compression. The parameter n represents the ducility of the material near/at
brittle failure ; thus by choosing n < I" (or 7 > I') one may expand (contract) the tertiary
phase for creep tests in tension (see Szyszkowski and Glockner, 1986). Setting 6. =
o, = const. in eqn (11), one can integrate the expression to obtain a relation involving
the rupture time, f (for which @ = 1), in the form

(1+nK-tgah =1 (12)
from which one can determine X and I" by using a log-log plot of g VS 0ax.

2.2. Microcracking in compression

Effects of microcracking are not as severe in compression as in tension with the tertiary
compressive creep stage for most materials under consideration here being significantly
longer than the corresponding phase for tension. Strain levels during this stage reach
magnitudes much larger than failure strains in tension. Experimental evidence for certain
materials, e.g. ice, indicates that the onset of the tertiary (compressive) creep stage is
associated with a certain level of “accumulated” strain and is independent of stress magni-
tude. The start of this phase, which is considered to contribute to and be primarily respon-
sible for the development of microcracking, is at the instant, ¢ (the “failure” time), which
appears to be related to the minimum strain rate, £y,, by

€min"lr=C (13)

where C is a material constant (for ice: C = 0.7-1.0%).

In view of the strain decomposition used in eqn (8), the parameter C denotes the
accumulated permanent viscous strain at time . This limiting value of the permanent
viscous strain, e} = C, is taken to be a material parameter also for the multiaxial stress state,
where it should be measured by the “effective” axial permanent strain given by (Szyszkowski
and Glockner, 1986)

ef = [fefef)' . (14

Thus, the term correcting the permanent viscous strain rate, eqn (9¢), taking into account
the effects of microcracking for the compression case, is written as

P ]
l+oz<i—‘8r - l) ; where a=0 for &f <ef (15)

and where « and a, together with ¢}, are the material parameters to be determined from
and defining the tertiary compressive creep phase of the material, up to failure.
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Fig. 2. Creep curves for oxygen-free copper in tension at 329°F (165°C).

The following procedure is suggested for modelling the compression creep behaviour
of a material up to failure:

(i) for &% < §, microcracking does not affect the permanent viscous creep rate, &,
eqn (5¢),

(it) for e& > €§, the permanent viscous creep rate is a function not only of the stress
magnitude but also of the “excess” permanent viscous strain, &f —éj.

While in the tension case, eqn (12) is used to define the instant of rupture, t, as a
function of stress magnitude, the onset of failure in the compression case is identified from
eqn (13) as the time, #;, representing the start of the accelerating creep stage. Using the
relation between é,;, and the stress magnitude, which according to eqn (9¢) should have
the form

. 1
Emin = ;__o.n’ (16)

2
expression (13) can be recast as
tro" = v,C an

which, like eqn (12), represents a straight line on a log-log plot of ¢ vs 1;.

Combining the contributions for the tensile and compressive tertiary creep stage, eqns
(10) and (15), the final “corrected” expression for the permanent viscous strain rate for an
arbitrary (positive or negative) stress state, taking into account the effects of microcracking,

is written as
. 1] &0 | [ (a& )a]
b=l * —— . 3 P .
K Vz[l-w(t)] Italz—1) |5 2=0 for &f<ef (18)

The nonlinear multiaxial constitutive model, represented by eqns (8), (9) and (18), reduces
to the uniaxial nonlinear material law discussed in Szyszkowski and Glockner (1985), where
it was also verified against experimental data from compression experiments on ice, both
constant stress (creep) and constant strain rate tests.

3. CAPABILITY AND VERSATILITY OF MODEL

Due to the limited experimental data available, the model’s capability in predicting/
simulating the behaviour of a number of real materials could only be assessed for the
uniaxial case. Using material parameters as indicated on the figures, the (uniaxial)
primary and secondary stage creep response is predicted and compared with experimental
data for oxygen-free copper in tension, asphalt concrete in compression and poly-vinyl-
chloride in tension (Figs 2-5). The material parameters were evaluated by fitting the curves
obtainable from eqn (5) to the available experimental data. The agreement between test
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results and theoretical prediction verifies, to some extent, the validity of the creep model
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discussed in the previous chapter.

Theoretical/model results for primary and secondary creep as well as recovery after
unloading are compared with experimental data for asbestos laminate and for ice next (Figs
6 and 7). Note the excellent agreement between predictions and test data for the creep
response of both materials and the recovery phase of ice while the recovery for asbestos
laminate is clearly overestimated, the model not taking into account permanent set due to

plastic effects which are likely to be present in such materials.
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The final figure (Fig. 8) shows the capability of the model in predicting all three stages

of creep and strain softening at various constant strain rates for ice, again simulating actual
material behaviour with a surprising precision (Szyszkowski and Glockner, 1985). The
creep curves and constant strain-rate response are obtained, of course, using one and the
same set of material parameters (Szyszkowski and Glockner, 1985).
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4. CONCLUSIONS

A multiaxial hereditary constitutive model for nonlinear time-dependent materials is
briefly reviewed and its capability and versatility demonstrated by predicting the uniaxial
behaviour in tension or compression of a number of materials and comparing such pre-
dictions with experimental data. The model describes. in a unified and continuous manner
and by means of a single expression and a set of material parameters, the three stages of
creep, relaxation and recovery, strain softening at constant strain rates and tensile brittle-
ness. It takes into account the entire stress history in defining the strain/stress relation, and
treats arbitrary spatial and temporal variation in stress. including the case when ¢ = 0 (after
unloading), after which there is some strain recovery : for many “‘simplified” models in use,
o = 0 means ¢ = 0, with no recovery predicted. Only one material function. the stress-
nonlinearity F(o) = ¢”, is used while all other parameters are material constants independent
of stress level. It is significant that the model can predict, with apparently surprising
accuracy, the response of a fairly wide class of materials under a variety of stress/strain
conditions, both compressive and tensile, using a single set of material parameters. In this
sense, our model is also superior to most of the commonly used, “simple™ creep models
which normally use a large number of parameters/functions, many of which are functions
of stress level (Dietrich ez al., 1987). Additionally, the hereditary model discussed here can
easily be adopted to any FEM program (Szyszkowski and Glockner, 1987b) for numerical
analysis of complex structures.

Unfortunately, due to lack of multiaxial experimental data, only the uniaxial version
of the model could be applied and assessed. In addition, such evaluation was restricted
primarily to the first two stages of creep and recovery phenomena, with tertiary creep and
strain softening data also being extremely scarce, particularly for the tensile stress state.

Despite its capabilities and its versatility, this semi-empirical model should be looked
upon as a first step towards finding a general constitutive law for this class of materials.
Substantial progress in reaching such a goal will require considerable additional exper-
imental data, including results from tensile and multiaxial tests.
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